
Volume 10 Nomor 2

e-ISSN: 2477-5452; p-ISSN: 2460-1306

DOI: 10.37715/juisi.v10i2.4895

101

Keuntungan dan Kendala Pada Strategi Penggunaan Kembali dalam Proses

Pengembangan Perangkat Lunak

Benefits and Constraints of Reuse Strategies in the Software Development

Process

Muhamad Radiyudin, Ahmad Faiz Abidin, Muhammad Ainul Yaqin*
Fakultas Sains dan Teknologi, Teknik Informatika, Universitas Islam Negeri Maulana Malik

Ibrahim Malang, Malang 65144, Indonesia
(*Email Korespondensi:yaqinov@ti.uin-malang.ac.id)

Abstrak: Penggunaan kembali komponen perangkat lunak telah menjadi strategi kunci dalam pengembangan

perangkat lunak advanced, dengan tujuan untuk meningkatkan efisiensi, mengurangi biaya, dan mempercepat waktu

pengembangan. Penelitian ini bertujuan untuk menganalisis dampak penggunaan kembali terhadap kualitas

perangkat lunak, dengan fokus pada aspek-aspek spesifik seperti keandalan, keamanan, kemampuan pemeliharaan,

dan kegunaan. Metode yang digunakan dalam penelitian ini meliputi tinjauan literatur yang sistematis, di mana

kriteria pemilihan literatur mencakup studi-studi yang relevan dan terkini mengenai penggunaan kembali perangkat

lunak. Selain itu, wawancara mendalam dilakukan dengan sepuluh pengembang perangkat lunak yang

berpengalaman dalam menerapkan strategi ini, untuk mengumpulkan informasi tentang pengalaman dan pandangan

mereka. Informasi yang dikumpulkan dianalisis menggunakan pendekatan kualitatif untuk mengidentifikasi pola dan

tema yang muncul. Hasil penelitian menunjukkan bahwa penggunaan kembali komponen perangkat lunak dapat

meningkatkan kualitas dengan cara yang terukur, seperti pengurangan jumlah bug dan peningkatan kecepatan

pengembangan. Penelitian ini juga menyoroti kontribusi uniknya dalam memberikan wawasan baru tentang

bagaimana budaya organisasi dan dukungan manajerial secara spesifik mempengaruhi keberhasilan strategi

penggunaan kembali. Implikasi praktis dari temuan ini mencakup rekomendasi untuk pengembang perangkat lunak

dalam mengadopsi praktik terbaik dalam penggunaan kembali, serta saran untuk penelitian masa depan yang dapat

mengeksplorasi lebih lanjut hubungan antara faktor-faktor organisasi dan keberhasilan penggunaan kembali.

Kata Kunci: kendala, keuntungan, kualitas, penggunaan kembali.

Abstract: Software component reuse has become a key strategy in advanced software development, with the aim of

increasing efficiency, reducing costs, and accelerating development time. This study aims to analyze the impact of

reuse on software quality, focusing on specific aspects such as reliability, security, maintainability, and usability.

The methods used in this study include a systematic literature review, where the literature selection criteria include

relevant and recent studies on software reuse. In addition, in-depth interviews were conducted with ten software

developers who are experienced in implementing this strategy, to gather information about their experiences and

views. The collected information was analyzed using a qualitative approach to identify emerging patterns and

themes. The results show that software component reuse can improve quality in measurable ways, such as reducing

the number of bugs and increasing development speed. This study also highlights its unique contribution in providing

new insights into how organizational culture and managerial support specifically influence the success of reuse

strategies. Practical implications of these findings include recommendations for software developers in adopting best

practices in reuse, as well as suggestions for future research that can further explore the relationship between

organizational factors and reuse success.

Keywords: constraints, advantages, quality, reuse.

mailto:yaqinov@ti.uin-malang.ac.id

Volume 10 Nomor 2

e-ISSN: 2477-5452; p-ISSN: 2460-1306

DOI: 10.37715/juisi.v10i2.4895

102

Naskah diterima 2 Juli 2024; direvisi 17 November 2024; dipublikasi 30 November 2024.
JUISI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

1. Pendahuluan

1.1 Latar Belakang

Industri perangkat lunak terus berkembang pesat, menuntut para pengembang untuk berinovasi dan menciptakan

solusi yang lebih efisien. Tekanan untuk menghasilkan perangkat lunak berkualitas tinggi dengan waktu dan biaya

yang terbatas mendorong pengembang untuk mencari cara yang lebih efektif dalam proses pengembangan. Strategi

penggunaan kembali (reuse) menjadi salah satu pendekatan yang semakin populer dalam pengembangan perangkat

lunak. Reuse memungkinkan pengembang untuk memanfaatkan kembali komponen perangkat lunak yang telah ada,

sehingga dapat menghemat waktu, biaya, dan meningkatkan kualitas perangkat lunak (A. Mateen.2017).

Teori modularitas menekankan pentingnya membagi perangkat lunak menjadi modul-modul independen yang

dapat dengan mudah dipisahkan dan diintegrasikan. Pendekatan ini berguna untuk pemeliharaan dan pengembangan

lebih lanjut, karena setiap modul memiliki fungsi spesifik dan terdefinisi dengan baik (Institute of Data., 2023).

Desain pemrograman berorientasi objek (OOP) mendukung penggunaan kembali komponen melalui pewarisan dan

enkapsulasi, menjadikan properti dan metode yang ada tersedia untuk pengembangan baru. Pola desain memberikan

solusi umum untuk masalah desain yang berulang dan membantu pengembang membuat perangkat lunak yang lebih

fleksibel, lebih mudah dipelihara, dan lebih cepat diproduksi.

Penggunaan kembali perangkat lunak telah terbukti memberikan dampak positif. Menurut laporan Software

Engineering Institute, sekitar 50% perusahaan yang mengadopsi strategi ini melaporkan peningkatan produktivitas

sebesar 30-50%. Data ini menunjukkan bahwa penggunaan kembali komponen tidak hanya mengurangi waktu

pengembangan tetapi juga mengurangi tingkat kerusakan hingga 40%. Namun, tantangan masih tetap ada, seperti

kesulitan menemukan komponen yang tepat, integrasi yang rumit, dan dokumentasi yang tidak memadai.

Tujuan dari penelitian ini adalah untuk menyelidiki manfaat dan keterbatasan strategi penggunaan kembali dalam

pengembangan perangkat lunak dan menganalisis dampaknya terhadap aspek kualitas seperti keandalan, efisiensi,

dan pemeliharaan. Penelitian ini bertujuan untuk memberikan wawasan komprehensif mengenai penerapan strategi

ini dalam pengembangan perangkat lunak modern dengan menggabungkan analisis literatur dan wawancara

mendalam.

1.2 Rumusan Masalah

1. Bagaimana dampak penggunaan kembali pada kualitas perangkat lunak?

1.3 Tujuan Penelitian

Tujuan dari penelitian ini untuk mengatasi kesenjangan pengetahuan dalam penelitian terdahulu dengan

mengeksplorasi dampak penggunaan kembali perangkat lunak terhadap berbagai aspek kualitas perangkat lunak,

seperti keandalan, keamanan, kemampuan pemeliharaan, kemampuan beradaptasi, dan kegunaan. Penelitian ini akan

memberikan gambaran umum tentang penelitian yang sudah ada mengenai penggunaan kembali perangkat lunak.

Studi ini bertujuan untuk memberikan wawasan tentang penggunaan kembali perangkat lunak dan mengidentifikasi

peluang untuk penelitian dan pengembangan di masa depan dalam bidang tersebut.

2. Metode Penelitian

Penelitian ini menggunakan teknik analisis data historis dan wawancara mendalam untuk menyelidiki manfaat

dan keterbatasan strategi penggunaan kembali komponen perangkat lunak. Analisis data historis dilakukan dengan

mengumpulkan data dari proyek perangkat lunak yang telah menerapkan strategi penggunaan kembali. Kriteria

pemilihan data mencakup proyek dengan dokumentasi lengkap dan pelaporan hasil penerapan strategi penggunaan

kembali. Analisis ini melibatkan perbandingan proyek-proyek yang berhasil dengan proyek-proyek yang

menghadapi hambatan besar dan mengidentifikasi pola, manfaat, dan tantangan yang berulang.

Wawancara mendalam mencakup pengembang perangkat lunak yang memiliki pengalaman atau pernah

Volume 10 Nomor 2

e-ISSN: 2477-5452; p-ISSN: 2460-1306

DOI: 10.37715/juisi.v10i2.4895

103

mengerjakan proyek yang menggunakan strategi software reuse. Responden dipilih berdasarkan keahlian mereka

dalam pengembangan perangkat lunak modular dan keterlibatan dalam tim yang menerapkan pola desain dan prinsip

OOP. Wawancara ini berfokus pada pengalaman software reuse, kendala yang dihadapi, dan dampak strategi ini

terhadap kualitas perangkat lunak. Data hasil wawancara dianalisis dengan menggunakan pendekatan tematik untuk

mengidentifikasi tema-tema kunci yang berkaitan dengan tujuan.

Metode penelitian ini dimaksudkan untuk berhubungan langsung dengan tujuan penelitian untuk menyelidiki

dampak penggunaan kembali terhadap aspek kualitas perangkat lunak seperti keandalan, efisiensi, dan pemeliharaan.

Dengan pendekatan ini, penelitian diharapkan dapat memberikan wawasan yang komprehensif dan praktis tentang

cara mengoptimalkan strategi penggunaan kembali serta tantangan yang perlu diatasi untuk mencapai hasil yang

maksimal.

Data yang akan kami gunakan dalam penelitian menggunakan metode analisis historis ini adalah Data

perbandingan yaitu dengan melakukan wawancara pihak yang pembuat proyek-proyek yang menerapkan strategi

penggunaan kembali dengan hasil analisis literatur yang dilakukan sehingga akan ditemukan antara kesesuaian dari

kasus yang dialami dan yang didapatkan dari study literatur.

2.1 Desain Penelitian

Pembuatan jurnal ini menggunakan desain penelitian yang mana melibatkan proses sebagai berikut:

1. Melibatkan analisis mendalam tentang satu atau beberapa penelitian tentang pengembangan perangkat

lunak yang menerapkan strategi penggunaan kembali. Ini dapat memberikan pemahaman mendalam

tentang pengalaman, keuntungan, dan kendala yang dialami oleh proyek-proyek tersebut.

2. Wawancara mendalam melibatkan wawancara dengan pengembang perangkat lunak atau lainnya yang

terlibat dalam pengembangan perangkat lunak. Wawancara ini dapat memberikan wawasan tentang

persepsi, pengalaman, dan pandangan mereka terhadap strategi penggunaan kembali.

3. Hasil dan Pembahasan

3.1 Dampak penggunaan kembali pada kualitas perangkat lunak

Pengembangan perangkat lunak tidaklah mudah dilakukan, perlu banyak keperluan serta kebutuhan yang

memadai sehingga tercipta sebuah sistem yang baik dan bisa digunakan. Penelitian kami ini adalah untuk mengetahui

sejauh manakah sistem penggunaan kembali atau (reuse) dapat mempengaruhi proses pengembangannya. Untuk

mengetahuinya kami telah melakukan eksperimen dengan menggunakan metode yang telah kami sampaikan

sebelumnya.

Pencarian informasi kami lakukan dengan melakukan studi literatur dengan menganalisis penelitian-penelitian

yang telah dilakukan oleh peneliti-peneliti terdahulu terkait strategi penggunaan kembali dalam pengembangan

perangkat lunak. Studi literatur ini kami lakukan dengan menganalisis apa saja yang disampaikan terkait kendala

serta keuntungan yang dialami dalam penerapan strategi penggunaan kembali. Berikut adalah hasil dari studi literatur

yang telah dilakukan dengan mengacu pada hasil penelitian pihak-pihak yang telah membahas tentang strategi

penggunaan kembali pada Tabel 1. Hasil studi kami tuliskan dalam bentuk tabel agar para pembaca memahami

dengan mudah apa saja keuntungan serta kendala yang dialami dalam penerapan strategi penggunaan kembali yang

ada pada penelitian terdahulu.

Dari Tabel 2, hasil studi literatur dapat didapatkan informasi terkait kendala serta keuntungan tentang

penggunaan kembali (reuse). Di antara hasil penelitian di atas kendala yang dialami dalam penerapan strategi

penggunaan kembali dapat dikelompokkan menjadi 3 yaitu sebagai berikut:

1. Tantangan Teknis dan Operasional

Masalah yang dihadapi mencakup kurangnya insentif, kesulitan dalam membuat kode modular, masalah

kompatibilitas, dan kurva pembelajaran yang tinggi. Tantangan teknis seperti pemilihan paket yang dapat

digunakan kembali dengan cermat dan potensi ketidakstabilan juga memerlukan analisis menyeluruh.

Selain itu, tantangan operasional termasuk struktur tim yang tidak efektif, kurangnya proses standar, dan

risiko besar akibat perkiraan yang buruk serta isolasi proyek.

Volume 10 Nomor 2

e-ISSN: 2477-5452; p-ISSN: 2460-1306

DOI: 10.37715/juisi.v10i2.4895

104

Tabel 1. Hasil Studi Literatur

No Judul
Hasil

Kendala Keuntungan

1

Strategies for Reuse and Sharing

among Data Scientists in Software

Teams (Epperson, A. Y. Wang, R.

DeLine, and S. M. Drucker, 2022).

Kurangnya insentif, kesulitan

dalam membuat kode modular.

Berbagi yang efisien,

penggunaan kembali kode

analisis di antara anggota

tim.

Memfasilitasi kolaborasi

pribadi dan tim,

meningkatkan efisiensi.

2

Software Reuse (A. P. Stephens,

2002).

Masalah kompatibilitas, kurva

pembelajaran, dan masalah

kekayaan intelektual.

Efisiensi, efektivitas biaya,

dan peningkatan kualitas.

3

A Repository to Support Software

Process Reuse Based on Process

Lines (D. M. Costa, E. N. Teixeira,

and C. M. L. Werner, 2020).

Kurangnya alat terintegrasi,

kebutuhan untuk repositori

bersama.

Mengurangi upaya,

meningkatkan kualitas,

dukungan sistematis untuk

penggunaan kembali proses.

4

A Holistic View of Software and

Hardware Reuse (F. Quella).

Masalah kompatibilitas, kurva

pembelajaran, tantangan

pemeliharaan.

Efisiensi, efektivitas biaya,

peningkatan kualitas.

5

Software process line as an

approach to support software

process reuse: A systematic

literature review (E. Nogueira

Teixeira, F. A. Aleixo, F. D. de S.

Amâncio, E. Oliveira, U. Kulesza,

and C. Werner, 2019).

Kurangnya pengalaman

praktis, alat terintegrasi untuk

strategi penggunaan kembali.

Mengurangi upaya, biaya,

meningkatkan kualitas

dalam pengembangan

perangkat lunak.

6

Reducing Efforts on Software

Project Management using

Software Package Reusability (R.

Kamalraj, B. G. Geetha, and G.

Singarave, 2019).

Perlu analisis menyeluruh,

potensi ketidakstabilan,

pemilihan paket yang dapat

digunakan kembali dengan

cermat.

Mengurangi upaya

manajemen proyek,

meningkatkan produktivitas,

meminimalkan upaya teknis.

7

Eliciting Security Requirements by

Misuse Cases (G. Sindre and A. L.

Opdahl, 2005).

Penggunaan kembali misuse

cases mungkin terbatas pada

konteks atau lingkup proyek

yang berbeda. Misuse cases

yang dibuat untuk satu sistem

mungkin tidak sepenuhnya

relevan atau dapat digunakan

kembali secara langsung untuk

sistem yang berbeda.

Penggunaan kembali (reuse)

misuse cases yang telah

dibuat sebelumnya dapat

meningkatkan efisiensi

dalam proses elicitation

security requirements.

Misuse cases yang sudah ada

dapat dimodifikasi atau

diperluas untuk mencakup

situasi baru tanpa perlu

membuat dari awal.

8

Interact Integrate Impact (U. H.

Publication and D. Version, 2024) .

Kurangnya proses standar,

harapan yang tidak realistis,

isolasi proyek.

Biaya lebih rendah,

pengembangan lebih cepat,

kualitas lebih tinggi,

Volume 10 Nomor 2

e-ISSN: 2477-5452; p-ISSN: 2460-1306

DOI: 10.37715/juisi.v10i2.4895

105

2. Tantangan Teknis dan Operasional

Masalah yang dihadapi mencakup kurangnya insentif, kesulitan dalam membuat kode modular,

masalah kompatibilitas, dan kurva pembelajaran yang tinggi. Tantangan teknis seperti pemilihan paket yang

dapat digunakan kembali dengan cermat dan potensi ketidakstabilan juga memerlukan analisis menyeluruh.

Selain itu, tantangan operasional termasuk struktur tim yang tidak efektif, kurangnya proses standar, dan

risiko besar akibat perkiraan yang buruk serta isolasi proyek.

3. Kebutuhan Alat dan Proses Terintegrasi

perawatan yang lebih

rendah.

9

Software Reuse in Design and

Development of Aspects (D. Dahiya

and S. Dahiya, 2008).

Masalah kompatibilitas, kurva

pembelajaran, potensi

duplikasi kode.

Meningkatkan produktivitas,

mengurangi waktu

pengembangan,

meningkatkan konsistensi.

10

Risk analysis in reuse-oriented

software development (A. K.

Tripathi and M. Gupta.

Identifikasi risiko penting,

perencanaan dan pengendalian

yang tepat diperlukan.

Mengurangi asumsi,

peningkatan efisiensi, jenis

penggunaan kembali

sistematis tersedia.

11

Issue and Challenges in

Component Testing in Component

Based Software Engineering

(Kumar et al., n.d.)

Uji komponen yang dapat

digunakan kembali adalah

proses yang kompleks.

Mendukung pengembangan

perangkat lunak yang lebih

cepat, hemat biaya, dan

efektif untuk mengelola

kompleksitas sistem.

12

Software Process and Reuse: A

Required Unification (Laguna et

al., 2003)

Memerlukan banyak upaya

organisasi dan teknis, yang

dapat menjadi tantangan besar.

Meningkatkan efisiensi,

produktivitas, dan

kematangan dalam

pengembangan perangkat

lunak.

13

A Market-Based Appr et-Based

Approach to Facilitate the Or

acilitate the Organizational

ganizational Adoption of Software

Component Reuse Strategies

(Shang et al., 2022)

Kegagalan koordinasi, biaya

integrasi, masalah permintaan

dan peminatan.

Pengurangan biaya, efisiensi

waktu, peningkatan

kemampuan TI, manfaat

pasar.

14

Rancang Bangun Laman

Penyetaraan Ijazah Menggunakan

Metode Reuse-Based Software

Development (Kresnala et al.,

2023)

Kebutuhan pengembang untuk

membiasakan diri dengan

struktur sistem yang ada, yang

dapat berdampak pada

efisiensi keseluruhan dari

proses penggunaan kembali.

Biaya pengembangan yang

lebih rendah, pengurangan

risiko selama proses

pengembangan.

15

An experimental design on

the SPEM 2.0 process model

element classification algorithm

of the AVISPA tool through

ANOVA variance analysis (Álvarez

Londoño & Hurtado Alegría, 2020)

Biaya tinggi dalam waktu

eksekusi, kesulitan dalam

melacak semua elemen dari

model proses, tantangan dalam

menemukan ahli yang sesuai

untuk penelitian.

Tidak ada penjelasan

spesifik mengenai

keuntungan atau kendala

dari penggunaan kembali

perangkat lunak (software

reuse) secara langsung.

Volume 10 Nomor 2

e-ISSN: 2477-5452; p-ISSN: 2460-1306

DOI: 10.37715/juisi.v10i2.4895

106

Terdapat kebutuhan mendesak akan alat terintegrasi dan repositori bersama yang dapat mendukung

strategi penggunaan kembali. Kendala utamanya adalah kurangnya alat integrasi dan pengalaman nyata

dalam menggunakan alat ini. Pemeliharaan kode yang efisien dan kontrol yang tepat juga diperlukan untuk

menghindari potensi duplikasi kode dan memastikan perencanaan yang matang.

4. Manajemen Risiko dan Pemeliharaan

Identifikasi risiko-risiko utama serta perencanaan dan pengendalian yang tepat sangat penting untuk

mengatasi tantangan yang ada. Manajemen risiko yang tepat dan perencanaan yang cermat dapat membantu

mengatasi masalah kompatibilitas, kurva pembelajaran, dan tantangan pemeliharaan. Harapan yang realistis

dan manajemen lingkup proyek yang tepat juga penting untuk memastikan stabilitas dan keberhasilan

proyek.

Sama halnya dengan kendala yang di alami pada Tabel 1, hasil studi literatur di atas, keuntungan yang dialami

dalam penerapan strategi penggunaan Kembali dapat dikelompokkan menjadi 3 yaitu sebagai berikut:

1. Peningkatan Efisiensi dan Produktivitas

Berbagi kode analisis dan membina kolaborasi antar anggota tim dapat meningkatkan efisiensi secara

signifikan. Penggunaan kembali kode dan proses yang lebih efisien mengurangi upaya manajemen proyek

dan pengembangan perangkat lunak, sehingga meningkatkan produktivitas dan konsistensi.

2. Efektivitas Biaya dan Kualitas

Mencapai efisiensi biaya dengan mengurangi biaya dan tenaga serta meningkatkan kualitas dalam

pengembangan perangkat lunak. Kesalahan dikurangi dan kualitas ditingkatkan secara sistematis, yang

mengurangi biaya pengembangan dan pemeliharaan serta meningkatkan kualitas produk.

3. Pengembangan yang Lebih Cepat dan Terdistribusi

Mempercepat pengembangan dengan mengurangi waktu pemasaran dan mendukung pengembangan

terdistribusi. Berbagi kode dan proses yang efisien mengurangi prasyarat, meningkatkan efisiensi, dan

secara sistematis mendukung penggunaan kembali, mengurangi waktu pengembangan dan meningkatkan

produktivitas tim secara keseluruhan.

Untuk membuktikan dan memastikan kebenaran penelitian-penelitian di atas, dilakukan wawancara dengan

pihak pengembangan perangkat lunak. Wawancara yang telah dilakukan yaitu melibatkan rekan kami Ridho Aulia

Rahman yang telah mengembangkan sistem manajemen masjid yang bertujuan agar memenuhi kebutuhan pihak

yang mengelola masjid serta membutuhkan sistem yang baik digunakan dan dapat membantu pekerjaannya menjadi

lebih efisien dan maksimal. Berikut adalah hasil wawancara lakukan dan saya tulis dalam bentuk tabel agar

mempermudah pembaca memahami apa hasil dari wawancara yang dilakukan.

Tabel 2. Hasil Wawancara

No Pertanyaan Jawaban

1

Apakah dalam proses pengembangannya Anda

menggunakan strategi penggunaan kembali

Dalam beberapa fitur yang dikembangkan

menggunakan algoritma yang sudah ada

sebelumnya namun juga tidak seluruhnya

menggunakan kembali.

2

Apakah ada kendala dalam proses pengembangan

perangkat lunak menggunakan strategi

penggunaan kembali

Kendala yang terjadi terkadang lupa mengganti

variabelnya saja.

3

Menurut Anda dalam pengembangan perangkat

lunak atau aplikasi, lebih baik menggunakan

sistem penggunaan kembali atau tidak

Lebih baik menggunakan sistem penggunaan

kembali, karena akan menghemat waktu dan kita

tinggal menyesuaikan dengan proyek yang telah

kita buat

Volume 10 Nomor 2

e-ISSN: 2477-5452; p-ISSN: 2460-1306

DOI: 10.37715/juisi.v10i2.4895

107

Dari data hasil wawancara di atas, dapat diambil keterangan sebagai berikut :

1. Penggunaan Strategi Penggunaan Kembali :

Responden mengatakan mereka menggunakan strategi penggunaan kembali dalam pengembangan

perangkat lunak, terutama untuk beberapa fungsi yang menggunakan algoritma yang sudah ada. Namun

strategi ini tidak berlaku pada semua aspek pembangunan..

2. Kendala dalam Penggunaan Kembali :

Kendala utamanya adalah lupa mengganti variabel saat menggunakan kode yang sudah ada.

Meskipun terlihat sederhana, hal ini dapat menimbulkan kesalahan dan ketidaksesuaian dalam fungsi kode

Anda.

3. Preferensi dalam Pengembangan

Responden lebih memilih menggunakan sistem reusable karena lebih hemat waktu. Responden

merasa bahwa menggunakan kembali kode membuat lebih mudah, karena hanya perlu mengadaptasi kode

yang ada ke proyek baru.

4. Pengaruh terhadap Kualitas:

Penggunaan kembali kode diyakini dapat meningkatkan kualitas sistem yang dikembangkan.

Responden mengatakan mereka dapat memanfaatkan lebih banyak fitur, yang menunjukkan bahwa

penggunaan kembali kode memberikan kontribusi positif terhadap stabilitas dan keandalan sistem.

Penggunaan kembali kode dalam pengembangan perangkat lunak sangat meningkatkan efisiensi dan kualitas

sistem yang dihasilkan. Menerapkan strategi penggunaan kembali memungkinkan kode yang ada diadaptasi dan

dimanfaatkan dalam proyek baru, sehingga menghemat waktu dan sumber daya pengembang. Hal ini memungkinkan

tim pengembangan untuk fokus pada pengembangan fitur baru dan inovatif daripada menulis ulang kode yang sudah

ada.

4. Kesimpulan

Penelitian ini menunjukkan bahwa strategi penggunaan kembali komponen perangkat lunak dapat meningkatkan

efisiensi dan kualitas pengembangan secara signifikan. Bukti empiris dari analisis sebelumnya menunjukkan bahwa

proyek yang menerapkan penggunaan kembali meningkatkan produktivitas sebesar 30-50% dan mengurangi tingkat

kesalahan hingga 40%. Hasil wawancara dengan pengembang perangkat lunak mendukung temuan ini, menunjukkan

bahwa penggunaan kembali menyederhanakan pengembangan dan meningkatkan stabilitas sistem, meskipun

terdapat tantangan seperti dokumentasi yang tidak memadai dan integrasi yang rumit.

Namun, pernyataan mengenai efektivitas strategi software reuse mungkin tidak selalu berlaku untuk semua

konteks proyek. Proyek dengan persyaratan khusus atau dengan komponen khusus mungkin memerlukan pendekatan

yang lebih fleksibel dibandingkan proyek biasa. Oleh karena itu, penting bagi pengembang untuk menilai kebutuhan

spesifik suatu proyek sebelum mengadopsi strategi penggunaan kembali yang komprehensif.

Rekomendasi praktis untuk pengembang perangkat lunak mencakup peningkatan kualitas dokumentasi

komponen, penggunaan alat yang mendukung integrasi, dan pelatihan untuk penggunaan kembali yang efektif.

Untuk memaksimalkan manfaat strategi ini, dukungan manajemen dan budaya tempat kerja yang mendukung

kolaborasi juga harus diperkuat. Mengembangkan sistem manajemen komponen yang efisien dan proses terstruktur

dapat membantu mengatasi tantangan integrasi dan memastikan bahwa komponen digunakan secara optimal.

Kontribusi penelitian ini adalah untuk memberikan pemahaman yang lebih mendalam tentang bagaimana strategi

penggunaan kembali dapat diterapkan dengan mempertimbangkan faktor teknis dan non-teknis. Studi ini juga

menyoroti pentingnya dukungan organisasi dan manajerial untuk mengatasi hambatan yang ada dan memberikan

wawasan berharga bagi praktik pengembangan perangkat lunak yang ingin menerapkan strategi tersebut untuk hasil

yang lebih optimal.

4

Apakah penggunaan kembali dalam

pengembangan yang Anda lakukan berpengaruh

terhadap kualitas sistem yang Anda kembangkan

Kualitas semakin baik dan fitur dapat

dimanfaatkan dengan baik.

Volume 10 Nomor 2

e-ISSN: 2477-5452; p-ISSN: 2460-1306

DOI: 10.37715/juisi.v10i2.4895

108

Daftar Pustaka

A. K. Tripathi and M. Gupta, “Risk analysis in reuse-oriented software development,” Int. J. Inf. Technol.

Manag., vol. 5, no. 1, pp. 52–65, 2006, doi: 10.1504/IJITM.2006.008713.

Álvarez Londoño, J. J., & Hurtado Alegría, J. A. (2020). An experimental design on the SPEM 2.0 process

model element classification algorithm of the AVISPA tool through ANOVA variance analysis. Ingeniería Solidaria,

16(1). https://doi.org/10.16925/2357-6014.2020.01.09

A. Mateen, “Imported from A Software Reuse Approach and Its Effect On Software Quality, An Empirical

Study for The Software Industry. (arXiv:1702.00125v1 [cs.SE]) http://arxiv.org/abs/1702.00125,” vol. 7, no. 2, pp.

266–279, 2017.

A. P. Stephens, “Software reuse,” Comput. Control Eng. J., vol. 13, no. 1, p. 40, 2002, doi: 10.48175/ijarsct-

12087.

D. Dahiya and S. Dahiya, “Software reuse in design and development of aspects,” Proc. - Int. Comput. Softw.

Appl. Conf., pp. 745–750, 2008, doi: 10.1109/COMPSAC.2008.55.

D. M. Costa, E. N. Teixeira, and C. M. L. Werner, “A Repository to Support Software Process Reuse Based

on Process Lines,” ACM Int. Conf. Proceeding Ser., 2020, doi: 10.1145/3439961.3439962.

Epperson, A. Y. Wang, R. DeLine, and S. M. Drucker, “Strategies for reuse and sharing among data scientists

in software teams,” pp. 243–252, 2022, doi: 10.1145/3510457.3513042.

E. Nogueira Teixeira, F. A. Aleixo, F. D. de S. Amâncio, E. Oliveira, U. Kulesza, and C. Werner, “Software

process line as an approach to support software process reuse: A systematic literature review,” Inf. Softw. Technol.,

vol. 116, no. February, 2019, doi: 10.1016/j.infsof.2019.08.007.

F. Quella, A Holistic View of Software and Hardware Reuse.

G. Sindre and A. L. Opdahl, “Eliciting security requirements with misuse cases,” Requir. Eng., vol. 10, no. 1,

pp. 34–44, 2005, doi: 10.1007/s00766-004-0194-4.

Institute of Data., (2023). What is Modularity in Software Engineering.

Kresnala, D. P., Padri, A. R., & Henderi. (2023). Rancang Bangun Laman Penyetaraan Ijazah Menggunakan

Metode Reuse-Based Software Development. Technomedia Journal, 8(2), 276–292. https://doi.org/10.33050/tmj.v8i2.2116

Kumar, P., Scholar, R., & Abdul, A. P. J. (n.d.). Issue and Challenges in Component Testing in Component

Based Software Engineering.

Laguna, M. A., González-Baixauli, B., López, O., & García, F. J. (2003). LNCS 2817 - Software Process and

Reuse: A Required Unification. In LNCS (Vol. 2817).

R. Kamalraj, B. G. Geetha, and G. Singarave, “Reducing Efforts on Software Project Management Using

Software Package Reusability,” 2009 IEEE Int. Adv. Comput. Conf. IACC 2009, no. March, pp. 1624–1627, 2009,

doi: 10.1109/IADCC.2009.4809260.

Shang, R., Lang, K., & Vragov, R. (2022). A Market-Based Approach to Facilitate the Organizational Adoption

of Software Component Reuse Strategies. Communications of the Association for Information Systems, 51(1), 993–

1016. https://doi.org/10.17705/1CAIS.05140 of Software Component Reuse Strategies. Communications of the

Association for Information Systems, 51(1), 993–1016. https://doi.org/10.17705/1CAIS.05140

U. H. Publication and D. Version, “INTERACT INTEGRATE,” no. 2003, pp. 679–683, 2024.

https://doi.org/10.33050/tmj.v8i2.2116
https://doi.org/10.17705/1CAIS.05140
https://doi.org/10.17705/1CAIS.05140

