FAÇADE INTEGRATED PHOTOVOLTAIC AS NET-ZERO ENERGY BUILDING Comparison of simulated and measured results

Main Article Content

Susan Susan

Abstract

Building integrated photovoltaic is considered as one of many potential strategies towards net zero energy building. The
implementation potentials are found both on building’s horizontal and vertical envelope. For tropical area, it is known
that solar incidence on a vertical plane is relatively lower than the one on a horizontal plane. However, potential of BIPV
implementation can be found in high-rise buildings where huge façade areas are available for PV integration. To predict
the energy generated by PV, many studies have already used a simulation method. Hence, the simulated result should
be compared with the one recorded in real condition. This study aims to present the potential of façade integrated
photovoltaic in tropical building area. A specified model is developed and used to calculate data of energy production
based on the irradiance data generated by simulation and experiment. The results indicate the potential of PV’s vertical
installation for buildings in tropical area. In the specified model, the percentages of energy substitution reach 31.04%
to 35.65%, exceed the mix-used energy target set by Indonesian Government. Simultaneously, this result indicates
significant reduction of building’s energy consumption and global emission that is derived from the use of non-renewable
energy source. Hence, it can be considered as one potential strategy towards Net-zero energy building. Furthermore, the
comparison of simulated results and measured results that less than 30% indicates that simulation using certain software
can be considered as a powerful tool to design strategies towards net-zero energy building.


Keywords: façade-integrated photovoltaic, net-zero, measured results, simulated results.



ABSTRAK


Panel surya yang terintegrasi dengan bangunan diasumsikan sebagai salah satu dari banyak strategi yang potensial menuju terciptanya bangunan dengan konsep net-zero energy. Potensi integrasi PV ditemukan baik pada implementasinya di bagian-
bagian selubung bangunan yang horisontal maupun yang vertikal. Untuk area tropis, diketahui bahwa radiasi matahari yang diterima oleh bidang vertikal relatif lebih rendah daripada bidang horisontal. Namun demikian, bangunan-bangunan bertingkat tinggi
dengan area dinding yang luas berpotensi untuk integrasi panel surya secara vertikal. Penelitian terdahulu banyak menggunakan
simulasi untuk memprediksi jumlah energi yang dihasilkan panel surya. Untuk validasi, hasil simulasi tersebut perlu dibandingkan
dengan hasil pencatatan daya luaran pada kondisi sebenarnya di lapangan. Studi ini bertujuan untuk mencari kelayakan potensi
integrasi panel surya pada dinding bangunan di daerah tropis. Sebuah model digunakan untuk menghitung jumlah produksi energi
berdasarkan data penerimaan radiasi matahari yang dihasilkan oleh simulasi dan eksperimen. Hasil studi menunjukkan potensi
instalasi panel surya secara vertikal di area tropis. Pada model yang dikaji, persentase substitusi energi yang dihasilkan panel
surya terhadap indeks kebutuhan energi mencapai 31.04% hingga 35.65%, melampaui target bauran energi yang ditetapkan oleh
Pemerintah Indonesia. Hasil ini mengindikasikan berkurangnya konsumsi energi dan emisi global yang berasal dari penggunaan
energi tak terbarukan. Instalasi panel surya secara vertikal pada dinding bangunan dapat dipertimbangkan sebagai salah satu
strategi yang potensial menuju terciptanya bangunan net-zero energy. Lebih lanjut, perbandingan antara hasil simulasi dan hasil
pengukuran lapangan dengan perbedaan kurang dari 30% mengindikasikan bahwa simulasi dengan perangkat lunak tertentu
dapat dianggap sebagai alat yang baik dalam perencanaan strategi desain menuju bangunan net-zero energy.


Kata Kunci: dinding terintegrasi panel surya, net-zero, hasil pengukuran lapangan, hasil simulasi.

Article Details

How to Cite
Susan, S. (2024). FAÇADE INTEGRATED PHOTOVOLTAIC AS NET-ZERO ENERGY BUILDING: Comparison of simulated and measured results. Aksen : Journal of Design and Creative Industry, 8(2). https://doi.org/10.37715/aksen.v8i2.4666
Section
Articles

References

Amelia, A R, Y M Irwan, W Z Leow, Irwanto #1, I Safwati, and M Zhafarina. 2016. “Investigation of the Effect Temperature on Photovoltaic (PV) Panel Output Performance” 6 (5).

American Society of Heating, Refrigerating and Air Conditioning Engineers (Atlanta, Georgia). 2014. Ashrae Guideline 14-2014: Measurement of Energy, Demand and Water Savings. Vol. 14. Atlanta, Georgia: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2014.

Cannavale, Alessandro, Maximilian Hörantner, Giles E. Eperon, Henry J. Snaith, Francesco Fiorito, Ubaldo Ayr, and Francesco Martellotta. 2017. “Building Integration of Semitransparent Perovskite-Based Solar Cells: Energy Performance and Visual Comfort Assessment.” Applied Energy 194: 94–107. https://doi.org/10.1016/j.apenergy.2017.03.011.

Do, Sung Lok, Minjae Shin, Juan Carlos Baltazar, and Jonghun Kim. 2017. “Energy Benefits from Semi-Transparent BIPV Window and Daylight-Dimming Systems for IECC Code-Compliance Residential Buildings in Hot and Humid Climates.” Solar Energy 155: 291–303. https://doi.org/10.1016/j.solener.2017.06.039.

“ENERGI INDONESIA 2019 SEKRETARIAT JENDERAL DEWAN ENERGI NASIONAL.” 2019. https://www.esdm.go.id/assets/media/content/content-indonesia-energy-outlook-2019-english-version.pdf.

Ghazali, Azhar, Elias @.Ilias Salleh, Lim Chin Haw, Sohif Mat, and Kamaruzzaman Sopian. 2017. “Performance and Financial Evaluation of Various Photovoltaic Vertical Facades on High-Rise Building in Malaysia.” Energy and Buildings 134 (January): 306–18. https://doi.org/10.1016/j.enbuild.2016.11.003.

Giouri, Evangelia Despoina, Martin Tenpierik, and Michela Turrin. 2020. “Zero Energy Potential of a High-Rise Office Building in a Mediterranean Climate: Using Multi-Objective Optimization to Understand the Impact of Design Decisions towards Zero-Energy High-Rise Buildings.” Energy and Buildings 209 (February). https://doi.org/10.1016/j.enbuild.2019.109666.

Gupta, V., and C. Deb. 2023. “Envelope Design for Low-Energy Buildings in the Tropics: A Review.” Renewable and Sustainable Energy Reviews. Elsevier Ltd. https://doi.org/10.1016/j.rser.2023.113650.

Liang, Hanwei, Xin Bian, and Liang Dong. 2023. “Towards Net Zero Carbon Buildings: Accounting the Building Embodied Carbon and Life Cycle-Based Policy Design for Greater Bay Area, China.” Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2023.101760.

Pathirana, Shakila, Asanka Rodrigo, and Rangika Halwatura. 2019. “Effect of Building Shape, Orientation, Window to Wall Ratios and Zones on Energy Efficiency and Thermal Comfort of Naturally Ventilated Houses in Tropical Climate.” International Journal of Energy and Environmental Engineering 10 (1): 107–20. https://doi.org/10.1007/s40095-018-0295-3.

“Pedoman Pelaksanaan Konservasi Energi Dan Pengawasan Di Lingkungan Departemen Pendidikan Nasional.” 2006. Jakarta.

Pulli, Emilio, Elena Rozzi, and Federico Bella. 2020. “Transparent Photovoltaic Technologies: Current Trends towards Upscaling.” Energy Conversion and Management. Elsevier Ltd. https://doi.org/10.1016/j.enconman.2020.112982.

Sartori, Igor, Assunta Napolitano, and Karsten Voss. 2012. “Net Zero Energy Buildings: A Consistent Definition Framework.” Energy and Buildings 48 (May): 220–32. https://doi.org/10.1016/j.enbuild.2012.01.032.

Wijeratne, W. M.Pabasara U., Rebecca J. Yang, Eric Too, and Ron Wakefield. 2019. “Design and Development of Distributed Solar PV Systems: Do the Current Tools Work?” Sustainable Cities and Society. Elsevier Ltd. https://doi.org/10.1016/j.scs.2018.11.035.

“World Energy Outlook 2022.” n.d. www.iea.org/t&c/.

Xiong, Wei, Zhongbing Liu, Zhenghong Wu, Jing Wu, Fanghan Su, and Ling Zhang. 2022. “Investigation of the Effect of Inter-Building Effect on the Performance of Semi-Transparent PV Glazing System.” Energy 245 (April). https://doi.org/10.1016/j.energy.2022.123160.